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We consider a new expression for the dependence of mass on velocity, more 
general than the corresponding law of the special theory of relativity (STR). The 
deviations from the STR become large with increasing rest mass. One should 
therefore measure the dependence of mass on velocity for objects with a large 
rest mass. The theory predicts that particles with real mass can travel with 
hyperlight velocities. The space-time picture discussed here is close to Mach's 
conception: It is assumed that the dynamical behavior of a particle in uniform 
translational motion is due to the "action" of all the other masses in the universe. 
Space-time is eliminated as an active cause and, in contrast to the STR, is not 
absolute within the theory discussed here. It turns out that effects based on the 
new transformation formulas (from the coordinates and time in a "stationary" 
frame to the coordinates and time in a "moving" frame) are identical to those 
expected from the Lorentz transformations. For example, it is known that 
rapidly "moving" /~ mesons decay with a longer half-life than "stationary"/~ 
mesons and the STR describes this effect quantitatively. However, there is no 
strong evidence for the validity of the STR because the theory given in this paper 
predicts the same result. 

1. I N T R O D U C T I O N  

F e i n b e r g  (1967) p o i n t e d  o u t  tha t  the  ex is tence  of  par t ic les  ( t achyons )  
w h ich  t ravel  fas ter  t h a n  l ight  is n o t  in  c o n t r a d i c t i o n  to the  special  t heo ry  of  

re la t iv i ty  (STR)  if their  mass  is a n  imaginary  quan t i t y .  I n  this p a p e r  we 

d iscuss  the  poss ib i l i ty  of  f a s t e r - than- l igh t  par t ic les  wi th  real  mass.  I n  this  
case the  p r inc ip le s  of  the  S T R  are viola ted.  However ,  as r e m a r k e d  b y  
F e i n b e r g  (1967), a par t ic le  wh ich  travels  wi th  hype r l igh t  ve loc i ty  does  n o t  
i nvo lve  logical  i ncons i s t enc ie s  p r o v i d e d  tha t  we are  ab le  to m e a s u r e  its 

p o s i t i o n  at  two t imes  a n d  t h e n  ca lcu la te  its veloci ty,  b y  divis ion,  to be  
grea ter  t h a n  the  veloci ty  of  l ight.  
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The STR is based on two postulates: (i) the principle of relativity and 
(ii) the principle of the constancy of the velocity of light. The laws derived 
from these two postulates are consistent and this holds also for the logical 
structure of the STR; in our opinion it is not possible to extend our 
knowledge of space and time without using more general assumptions than 
those given by (i) and (ii). If there exist faster-than-light particles with real 
mass it is necessary to construct a space-time theory which is more general 
than the STR. 

In this paper we analyze the uniform translational motion of particles; 
we shall not touch upon problems associated with the general theory of 
relativity. The space-time theory given here is based on a new expression for 
the dependence of mass on velocity which is more general than the corre- 
sponding expression of the STR. From this expression follows that the 
deviations from the STR grow with increasing rest mass. One should 
therefore measure this law for objects (or systems) with a large rest mass. 

Other relevant results are the following: 
(1) The theory predicts that objects with real mass can travel with 

hyperlight velocities. 
(2) The laws of the STR are included as a special case. 
(3) Space-time forms a nonabsolute continuum within the theory dis- 

cussed here. Within the STR space-time is an absolute one (Minkowski 
space). The statement "absolute" means (see Einstein, 1955, 1963) not only 
physically real, but also independent in its physical properties. As remarked 
by Einstein (1955, 1963), this is unsatisfactory because such a space-time 
only plays a determining role in all processes, without in its turn being 
influenced by them. 

Till now no serious experiment shows that the STR is inadequate. 
However, it is shown in this paper that effects based on the transformation 
formulas (existing between the coordinates and time in a "stationary" frame 
S and the coordinates and time in another "moving" frame S') must be 
identical to those expected from the STR. For example, it is known that 
rapidly "moving"/~ mesons decay with a longer half-life than "stationary"/~ 
mesons, and the STR describes this effect quantitatively. However, in our 
opinion this is not strong evidence for the validity of the STR because the 
theory discussed in this paper predicts the same result. 

2. D E P E N D E N C E  OF M A S S  O N  VELOCITY 

Let us consider a particle moving at the velocity v relative to the 
"stationary" frame of reference with coordinates (xl, x2, x3) and time t, and 
let us suppose that v is directed along the x~ axis. The rate of change of 
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momentum along the x~ axis is given by the force Fx, acting on the particle 
(Newton's second law): Fx, =dP/dt.  We define the mass m of the particle as 
the ratio of momentum P to its velocity: 

m = P / v  (1) 

Within the STR the mass varies with the velocity according to the law 

m 0 
m =  (2) 

(1 --  t92/C02 ) 1/2 

In this section we derive an expression for the dependence of mass on 
velocity more general than that given by equation (2). 

We define the kinetic energy E k of the particle as follows: Its differen- 
tial change is the force F~ times the differential distance moved: 

d E  k = Fx ldX  1 (3) 

The derivative of the kinetic energy with respect to the time is 

dEk dP 
dt =v--~- 

= mv_~t + v  2 dmdt 

(4) 

From this we obtain after some simple manipulations (provided dm/dt~O) 

dE k _ m dv 2 
- -  + v  2 ( 5 )  

dm 2 dm 

Furthermore, we assume that the inverse function of m=m(v )  exists and 
that the derivative of the inverse function v 2 --~(m) is defined over the 
whole mass range of interest. Then we have dS(m)/dm .dm/dv 2 = 1 and we 
may write equation (5) as follows: 

dE k _ m dS(m) 
dm 2 dm 

m 1 

2 dm/dv z 

~-B(m) 

- -  + v  2 

(6) 
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If we now integrate, we get 

=[m[ m' dr(m') 
Ek Jmo[ 2 din' 

= y ( r n ) - Y ( m o )  

- -  +~(m')ldrn' 
(7) 

where m 0 =m(0) is the rest mass and 

[m[ m_' dS(m') 
v(m)=jo t 2 am' 

= E  

- -  +8(m')]drn' 
(8) 

fmo[ m_' dr(m') +8(rn')]dm' 
Y ( m ~  0 [ 2 ] 

(9) 
=e0 

E is the total energy of the particle and E 0 its rest energy. The general 
expression for y(m) is not known. Let us continue by assuming that a 
Taylor expansion in powers of the mass m exists for y(m). The use of a 
Taylor expansion for the description of 7(m) will be suitable for the 
discussion of effects which show deviations from the STR. Provided that the 
energy E of the particle vanishes if the "moving" mass m becomes zero (this 
does not mean that particles with a rest mass of zero (m 0 =0)  do not exist) 
we obtain for the Taylor expansion the expression 

E= ~, mk'y (k) (10) 
k = l  

where 

y(k)=[ dk'Y(m) ] (11) 
Kink m=0 

In particular, by means of equation (7) we get 

~'(1)=[ m2 dS(m)dm +8(m)] m=O 

2" 1 [ dS(m) d26(m) ] 
, { ( * = ~ - [ 3 - - - d z + m  dm----- 5 -  

.I t n = O  
�9 . . 

d(n-l)6(m) +m 
-/(")= (n+l) dm("-o dm" Jim=0 

(12) 
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If we set y(1) =C0 2 in equation (10) and restrict ourselves to the first term in 
the expansion, we obtain the well-known result for the energy (E  = mc0 2) of 
the STR. If there exist terms with m k, k >  1, the results of the STR are only 
valid for sufficiently small masses. 

Now let us approximate the energy E by the first two terms [see 
equation (10)]: 

E = m 7  O) +lm 2"/(2) (13) 

The physical meanings of 7 (o and 7 (2) are discussed below. The nonlinear 
term in equation (13) means, that, if the energy E is conserved, the mass m 
is not an additive quantity. Although the nonlinear term does not appear in 
the STR, also here the mass is not always an additive quantity: the mass of a 
system is not equal to the sum of the masses of the particles forming it if the 
velocities of the particles in the center-of-mass system are different (see 
Terletzkii, 1968). 

With equation (13) we obtain for the differential equation (6) 

dm m 1 
- -  - ( 1 4 )  
d v  2 2 y(O +my(2) --I) 2 

The integration of equation (14) over all the masses from m 0 to m and over 
all the velocities from v 0 to v leads to the following result for the depen- 
dence of mass on velocity: 

m = m ( v  2) 
(15) 

(l+2T(2)/y(l)mo--1)o2/y(1) ) 1/2 
=m 0 1 + 2y(2)/y(l)m--~)2/y(l) 

If we integrate from the mass m0, at velocity v=O, to the mass m with the 
velocity v, we obtain 

1 + 2T(2)/y(1)m 0 ) 
m = m  0 

1 + 2y(2)/yO)m-- 1)2/7(1) 

1/2 

(16) 

With ~,~ and sufficiently small masses (m<<3y(l)/'y (2)) we get the 
result of the STR [see equation (2)]. If we accept the STR as a special case 
of our theory 7 (0 is given by %2 and we obtain from equation (16) 

) 1/3 
lim m = 3 Co 2 1 +1 (17) 

w o o  mo 2 
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W i t h i n  the S T R  m / m  o is a lways in f in i t e  for v - : c  o a n d  it  is no t  poss ib le  to 
exceed c 0. W i t h i n  the theory  p re sen t ed  here  signals can propagate at a 
velocity higher than that of  light j u s t  in  the  case ~,(2)>0. 

Velocity of Particles with a Rest Mass of Zero (e.g., Photons). By 
m e a n s  of e q u a t i o n  (16) we get for the  veloci ty  c m of  par t ic les  wi th  a rest  

mass  of zero the fo l lowing  express ion:  

Cm ~---("t '(l) Jr- 2my(2)) , /2 (18) 

or  wi th  e q u a t i o n  (13) 

c m has  the p r o p e r t y  

l im  cm 2 =~,(1) 
E~O 

= Co 2 

(19)  

(20) 

\ 3  E 

i i i 

l /m ~ = 3g /  
I 

log 

0,5 1,0 1o5 2,0 
V/C 0 

Fig. 1. Dependence of mass on velocity for several rest masses m 0 (full curves). The broken 
line shows the result of the STR. The constant 7(2) was chosen to be positive, The deviations 
from the STR become large with increasing rest mass. The effects become effective for m 0 > l 
g, and the corresponding energy is of the order of 10 24 GeV. No accderator can produce 
particles with energies like this. Therefore, the effects predicted here do not play a role in 
atomic physics and in the physics of elementary particles. However, the effects might be 
enormous in the case of astrophysical objects. 
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This means that Cm 2 approaches the fundamental c o n s t a n t  7 (1) with decreas- 
ing energy (or mass). Within the STR the velocity of light is given by c o [see 
equation (2)1. 

Numerical Discussion. If we accept the STR as a special case of our 
approach 7 (1) is given by c02=9X102~ cm2/sec 2. The rest mass of the 
neutron has been measured very precisely; the accuracy of -+0.0048% is 
quoted in K~3nig et al. (1962). From this we have estimated an upper limit 
for the absolute value of the constant 7 (2) by means of equation (13): 
17(2)[~5.7X 1019 erg /g  2. We have calculated the dependence of mass on 
velocity by means of equation (16) for several values of m 0. In principle, 7 (2) 
can be positive or negative. The results are presented in Figures 1 and 2, 
respectively. Whereas within the STR the quantity m / m  o only depends on 
the velocity v, the theory presented here predicts that m / m  o depends on v 
and on the rest mass mo. For example, in this case of 7 (2) > 0  the curves 
become smooth with increasing m 0. In this case there is no upper limit for 
the velocity of objects with m 0 ~ 0 .  
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Fig. 2. Dependence of mass on velocity for several rest masses m 0 (full curves). The broken 
line shows the result of the special theory of relativity. The constant .V(2) was chosen to be 
negative. 
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3. CONSTRUCTION OF SPACE-TIME 

We have derived the formula for the dependence of mass on velocity 
[equation (16)] without describing space-time. In this section we want to 
construct space-time on the basis of equation (16). 

3.1. Transformation Formulas. We want to deduce the relations existing 
between the coordinates and time (x~, x2, x3, t) in a "stationary" frame S 
and the coordinates and time (x' 1, x~, x;, t') in another "moving" frame S'. 
S and S' are moving relative to each other with a uniform translational 
motion; v is the velocity of S' relative to S. As in Section 2 ,  v is directed 
along the x~ axis. At this stage it is sufficient to know that the "stationary" 
frame S is described by clocks and scales. We shall give below a more 
detailed description of S. 

Assumption 1. The properties of the transformation formulas are inde- 
pendent of the origin of the coordinates and of the origin of time. In this 
case the relations between (xl, x2, x3,t ) and (x~, x'2, x~, t') must be linear. 

Assumption 2. The laws of electrodynamics are valid for all frames of 
reference. 

The photon's velocity (its rest mass is zero) is cm �9 If in Maxwell's 
equations we replace the velocity of light c o by (,/0)5~2ms0,/(2))1/2 [see 
equation (18)] it is straightforward to show on the basis of Assumptions 1 
and 2 that the transformations must have the following form: 

t ~  
X 1 

x~ --vt 

[ 1 - . V ( v  ( '  + )] ' "  

r 
X 2 = X  2 

X~ = X  3 

t ' =  
+ 2V(2>mso)- lvx, 

[ 1 - v 2 / ( r  + 2r )]1/2 

(21) 

In the formulas (21) instead o f  Cmso 2 we have used the expression ( 7  (1) 

+ 2mso~{(2)). 
The transformations (21) have the same structure as the Lorentz trans- 

formations, and, therefore, also in our theory the numerical value of the 
velocity of light (given in our theory by c,,s0) remains unchanged when we 
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proceed from S to S'. Thus Michelson's experiment would also be negative 
in the case discussed here. The meaning of the transformations (21), and in 
particular their dependence on ms0, is discussed in detail below. From the 
formulas (21) we get the Lorentz transformations if mso<<3y(1)/T (2) and 
c o =(7(1)) 1/2 [see equation (20)]. 

3.2. Determination of the Space-Time Metric in the "Stationary" Frame 
of Reference. In Section 3.1 we have deduced the relations existing between 
(x l, x2, x3, t) and (x~, x'2, x'3, t'). We have said nothing about the de- 
termination of the space-time metric in the "stationary" frame of refer- 
ence S. 

In order to determine the velocity c,,s0 =(,{(1) + 2m~oY(2))l/2 of the pho- 
ton we have to measure in S its position at two times; Ax I is the difference 
of the positions and At is the difference of the times. From the transforma- 
tion formulas (21) follows that c,,,0 must be a constant (independent of the 
energy or the mass of the photon) whatever may be the motion of the source 
which emits the photon. Then the following relations have to be satisfied: 

_ _  AXl 
Cmso-- At 

const 

__-(-r + 2m~0Y(2))l/2 

(22) 

Equation (22) seems to involve a contradiction: On the one hand cm, ~ must 
be constant and on the other hand Cms ~ is dependent on mso and, therefore, 
on the energy E=ms02 r177 . Because of the Doppler effect the 
energy and, therefore, the velocity of a photon emitted by a "moving" 
source must be different from that emitted by a "resting" source. This is in 
contradiction to Cms ~ = const and, therefore, in contradiction to the transfor- 
mation formulas (21). The only possibility of solving equation (22) is to 
assume that space-time forms a nonabsolute continuum. Within the STR 
space-time is definitely an absolute one (Minkowki's space). First we give a 
formal solution of equation (22) and secondly we shall discuss qualitatively 
a possible physical conception. 

Formal Solution. The constancy of the velocity of light is required. The 
only possibility of fulfilling this law is to assume that the space-time metric 
in S is mass dependent: The distances and time intervals in the "stationary" 
frame of reference have to be constructed in such a way that equation (22) is 
satisfied. The following ways are possible: If we choose for all "stationary" 
frames of reference the same metric for the time (independent on mso), the 
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distances AX 1 m u s t  be dependent on the mass mso. With equation (22) we 
obtain 

Ax I =Axl (m,0  ) 

= (y,0 + ~msoT(2))~/2At (23) 

Another possibility is to choose for all "stationary" frames of reference the 
same metric for the coordinates. In this case the time intervals At must be 
dependent on m,0 and we obtain 

At=At (mso)  

: (~(1) _~_ 2ms0]t(2 ) ) - 1 /2  Ax 1 (24) 

Either equation (23) or equation (24) can be used in order to fix the 
space-time geometry in a "stationary" frame of reference. 

A given space-time metric in the "stationary" frame S is always 
coupled to a mass. In the following we shall call it the rest mass of the 
"stationary" frame S. Or the other way round: A given rest mass (called 
ms0 ) produces its space-time metric; another rest mass m A =/=mso produces 
another space-time metric. From this point of view space-time cannot be 
considered as an absolute continuum and we have to identify the "stationary" 
frame of reference with the reference mass. The velocity of a photon with any 
energy (or mass) is given by (7 0) + z,,3,,,s0t.~,(2)~l/2! within the space-time metric 
of m,0 [equations (23) and (24)1. 

The space-time metric determined by the rest mass m,0 are the eigenco- 
ordinates and the eigentime of m,0. Examples are given in Figure 3. In order 
to fix the eigencoordinates and the eigentime for any mass in the laboratory 
we have to introduce a standard system (see the Appendix). The standard 
system can be fixed arbitrarily but should be the same in all laboratories. 
The formulas (21) transform the eigencoordinates x 1, x 2, x 3 and the eigen- 
time t of the rest mass ms0 from S to S'. More details concerning the 
transformations (21) are given in Section 4; we shall see that the introduc- 
tion of eigencoordinates and eigentime do not give rise to new measurable 
effects, and, therefore, the existence of a nonabsolute space-time should 
mainly be of interest for the theory of cognition. 

Example. The distance of 1 cm measured in a "stationary" frame S 1 
with the rest mass m 1 [in equation (23) ms0 is replaced by ml] is longer than 
the distance of 1 cm in another "stationary" frame S 2 with the rest mass m 2 
[in equation (23) ms0 is replaced by m2] provided m I > m  2 and 2 (2) >0.  The 
velocity of a photon with the mass  mA='/=ml:'/=m2 (its energy is 



Inertial Frames of Reference 421 

x 4 x~ 
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Fig. 3. Qualitative discussion of the space-time properties. Figure la and Figure lb show the 
structure of the space-time for different masses m a and rob, respectively. Because m a ~ m  b 
the distances and time intervals are different from each other. There is a global validity of the 
metric in Figures I a and lb, respectively: in both cases the particles are not accelerated and we 
have for each space-time point (e.g., 1 and 2) the same particle mass (m,,l =ma2 =ma,  mhl = 

mhz =rob) and, therefore, the same geometry. 

E=mA~ '(1) + �89 (2)) measured in S 1 is given by 

cm~ = (7 (') + 2m 17(2)) 1/2 (25) 

and the velocity of the s a m e  photon measured in S 2 is 

Cm2 = ( V ( I )  _]_ 2m2Y(21 ),/2 (26) 

Clearly, the velocity of the photon with the mass m A measured in units of its 
eigencoordinates and eigentime [in equation (23) m s o  is replaced by mA] is 

CmA = (7(l) + 2mAy(2 ))1/2 (27) 

In other words, in this case the rest mass of the "stationary" frame is 
identically equal to the mass m A of the photon. 

Within the f i x e d  space-time metric (for example, fixed by m l) the 
velocity of light is constant and independent of its mass (or energy). This 
means that the velocity of a photon is independent of the velocity of the 
source which emits the photon [as required by the transformations (21)]. 
Clearly, because of Doppler's effect the energy (or mass) of a photon 
emitted by a "moving" source must be different from that emitted by a 
"resting" source. However, the velocity of the photon remains unchanged 
because this effect does not change the space-time metric in S 1. 

Within the STR the metric (used in everyday life) can be fixed 
arbitrarily and is the same for all "stationary" frames of reference; the 
velocity of light is always c o = 3  • 10 l~ cm/sec.  From our point of view the 
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space-time metric used in everyday life is standardized by a mass of zero: 
note that the velocity of light c 0 used within the STR is related to %,o by 
[see equation (20)] 

Co= lim r ~ (28) 
mso  ~ 0 

In conclusion, we can say that the velocity of light %,0 [expressed by 
equation (22)] reflects a space-time property. It should be mentioned that 
within the STR the velocity of light c o =(,/(1))1/2 also reflects a space-time 
property: c o couples space and time. The additional term ~m,oy(2~, which 
appears in our theory, couples space-time to the mass m,0. 

Physical Concept. There is no observation that indicates that the coor- 
dinates and time in a "stationary" frame are mass dependent as required by 
the equations (23) and (24). This suggests we assume that space-time is not 
the cause of physically real effects (in contrast to Newton's and Minkowski's 
space). The following qualitative discussion is an example of how space-time 
can be eliminated as an active cause and play the role of an auxiliary 
element for the geometrical description of physically real properties. 

In the previous discussion we have used the following physical ele- 
ments: The mass m,0, the coordinates xl, x 2, x 3, and the time t. However, 
there are other masses m i, i = 1,2,. . . ,  in the universe besides m~0. We would 
like to assume that the dynamical behavior of any mass (for example, the 
mass m~0 ) is due to the "action" of all the other masses. We say the particle 
interacts with all the others. What does "action" or "interaction" mean? It 
involves the knowledge of what makes the particle go (namely, all the other 
masses) without getting into the machinery of it. All that we can do is to 
describe how it moves (see also the discussion in Feyman et al., 1964). In 
other words, we are only able to form "pictures ". We picture the interaction 
by means of a field % which is the representation of the interaction in space 
using the coordinates of the masses: 

~o=~(r,o,l,rso,2, ...,rso,i, . . . )  (29) 

where r,o ' i is the relative position vector from the mass m,o to the particle i. 
The force F~o acting on m,o is proportional to the gradient of rp: 

F~o - grad ~p (30) 

Since we are analyzing the unaccelerated motion we have 

F~o = 0  (31) 
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and 

v=const (32) 

From the right-hand side of equation (29) it follows that in this case the 
mass ms0 moves through a space-time region in which the field is flat 
(uncurved); within this space-time region ~ is independent of the coordi- 
nates. 

Note that within the flame of this conception the cause for the 
dynamical behavior is the mutual "action" of all the masses. Space-time 
appears as an auxiliary element; it represents geometrically the physically 
real properties. 

The analysis of the field cp (in principle, it can involve the four kinds of 
fundamental interactions, in particular the gravitation) lies out of the scope 
of this paper and is not necessary for the understanding of the space-time 
description given in this paper. 

In summary, we have analyzed the uniform translational motion of a 
mass m,0 as the interaction of m~o with an uncurved field. We could not 
give the machinery of this interaction process. Clearly, in order to obtain a 
consistent picture this machinery must be compatible with the effects 
produced by the law for the dependence of mass on velocity [equation (16)]. 
It should be emphasized that other conceptions could interpret the role of a 
nonabsolute space-time. 

Furthermore, we have discussed that the cause for the dynamical 
behavior of any particle is entirely the "action" of all the other masses. In 
the flame of this concept space-time must be considered as an auxiliary 
element; it geometrically describes physically real properties. That means 
space-time cannot give rise to any physically real effects and cannot be 
influenced by any physical conditions; in this sense the dependence of the 
space-time metric in S on mso [see equations (23) and (24)] reflects an 
instruction (how to fix the metric in the "stationary" flame S) and is not a 
measureable law. As we shall discuss below the elimination of space-time as 
an active cause is not in contradiction to the fact that the law for the 
slowing down of "moving" clocks gives rise to real effects. The meaning of 
the transformations (21) is discussed in Section 4. 

Comparison to Space-Time of the STR. Within the STR space-time is 
absolute (the four-dimensional Minkowski space). Clocks and scales in a 
"stationary" frame S, which determine space and time, are independent of 
any mass and the metric is the same for all S. The statement "absolute" 
means (see the discussion in Einstein, 1955, 1963) that space-time is 
independent in his physical properties, having a physical effect, but not 
itself influenced by physical conditions, and this is unsatisfactory. Einstein 
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(1955, 1963) concludes: 

It is contrary to the mode of thinking in science to conceive of a thing (space-time within the 
STR) which acts itself, but  which cannot be acted upon. This is the reason why E. Mach was 
led to make the at tempt to eliminate space as an active cause in the system of mechanics. 
According to him, a material particle does not  move in unaccelerated motion relatively to 
space, but  relatively to the centre of all the other masses in the universe; in this way the series 
of causes of mechanical phenomena was closed . . . .  

It is obvious that the physical conception outlined in this paper is very close 
to the ideas of Mach. Because of equation (22) we were able to give up the 
unsatisfactory conception of an absolute space-time; an absolute space-time 
would lead to contradictions within the theory discussed here. 

3.3. Inverse Trans|ormations. Both the "moving" and the "stationary" 
frames of reference are equivalent if they have the same metric. This is 
fulfilled if ms0 =ms, 0, where ms, o is the rest mass measured in S'. If S and 
S' are equivalent the inverse transformations from S' to S must be identi- 
cally equal to the direct one [from S to S', see equation (21)]; they must 
only differ in the sign of the velocity: 

x' 1 +vt' 

x, [1-v2/(7(')+~7(2)ms'o)] '/2 

x 2 = x ;  (33) 

X 3 ~ X ~  

t = 

t, t_ (y(l) -- (2) ~--1 , -t'3y ms,o) Xl 

[1 -"2 / ( - ' 0 )  ~ z.,f2)~. ~] 1/2 ' 

t~ / \ t  - - 3 l  " '~s 'O]]  

where 

ms, o =m,o  (34) 

Since we have to identify the reference system with the reference body, the 
velocity v in equation (21) is determined by the mass m s of the moving 
object and its rest mass ms0. Rewriting equation (16) we obtain 

v2=(y(l)+~y(2)ms)-(y(')+2y(2)mso)(mso2/ms2 ) (35) 

Another way to determine the transformation formulas is the following: 
Terletskii (1968) discussed on the basis of very general assumptions (without 
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the use of the postulate of the constancy of the vdocity of light) the fact that 
the transformation formulas must have the form of equation (21). In his 
formulas, however, an unknown function appears instead of (7 o) 
+2y(2)ms0), which has the dimensions of velocity squared. In the case 
discussed here Terletskii's unknown function should involve the constants 
7 (1) and 7 (2), bec~tuse there is no other way to introduce these constants in 
the formulas for the transformations of the coordinates and time. Terletskii's 
function can only be formed by the cons t an t s  7 (1) and y (2) in connection 
with a quantity which must have the dimensions of mass. In particular, the 
mass is coupled by the constant 7 (2) . From this point of view it seems to be 
natural to take c 2-y~ since no other quantity with the /'/'/sO 
dimensions of the velocity squared enters the formula for the dependence of 
mass on velocity. 

4. MEANING OF THE TRANSFORMATION FORMULAS 

The transformation formulas (21) should have a precise meaning in 
analogy to the Lorentz transformations. In the theory given here different 
transformations exist for different masses. 

Space is measured by scales and time is measured by clocks. We should 
be able to state, for example, what happens to a clock when it is carried 
around the world by plane; otherwise the theory is not related to the very 
precise tests of STR which are available today. 

It is easy to show that the expression 

~=l)/Cms 0 (36) 

is independent of mso. Using equation (A.1) (see the Appendix) we obtain 
immediately 

B= 
v _ A x l  1 

cm, ~ A t  ( y O ) + ~ m s o T ( 2 ) ) W 2  

A x l  N 1 

A t  u (y(1) +2mNy(2))1/2 

(37) 

As pointed out in the Appendix the standard mass m N is the same for all 
laboratories and can be fixed arbitrarily. If we choose m s =0 we obtain 

B=V/Co (38) 
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In this case v and c o can be measured by means of scales and clocks used 
within the STR (see Section 2). 

The fact that 13 is independent of mso is important for the following 
reason: It is straightforward to show by means of the transformation 
formulas (21) that the law for the slowing down of clocks is given by 

T/T 0 = (1--/32)--'/2 (39) 

and the law for the contraction of moving scales by 

l / l  o = (1 _/32 ),/2 (40) 

where T 0 is the time interval measured by a "stationary" dock, T is the 
interval measured by a "moving" dock, l 0 is the length of a "stationary" 
scale, and l is the length of a "moving" scale. Since/3 is independent of mso 
we may use for it the expression given by equation (38). This means that the 
laws for the slowing down of clocks and the contraction of moving scales 
predicted here are identical to the corresponding results of the STR. 

Clearly, in our theory T O and 10 are dependent on ms0 and this is due to 
the fact that space-time cannot be an absolute continuum within the theory 
given here. However, as already mentioned above, this kind of mass 
dependence reflects an instruction and is not a directly measurable law. This 
is because we have eliminated space-time as an active cause. 

If we take a clock and a scale used in everyday life (defined in section 
3.2) and jump on a train we observe for ,r and l exactly the same results as 
those expected from the STR. For example, it is known that rapidly 
"moving" # mesons decay with a longer half-life than "stationary"/~ mesons 
and the STR describes this effect quantitatively. However, this is not strong 
evidence for the validity of the STR because the theory discussed in this 
paper predicts the same result. 

The reason why we observe the same effects (concerning clocks and 
scales) in both theories is this: The mass dependence of the transformation 
formulas is due to the mass dependence of the space-time metric in S; 
the transformation of a fixed space-time (xl, xz, x3, t) from S to S' 
(x~, x;, x~, t') is independent of m,0 and is given by the Lorentz transfor- 
mations. This fact means that beside T/T 0 and l / l  o the transformation of the 
properties (for example, the electromagnetic field) of all other physical 
processes can only be dependent on/3 and not on the mass m,0. Although 
the space-time discussed in this paper is fundamentally different from the 
space-time of the STR we obtain the following important result: effects 
based on the transformation formulas (21) are identical to those expected from 
the STR; the mass dependence of the space-time metric in S only reflects an 
instruction. 
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Although we have eliminated space-time as an active cause we observe 
that the slowing down of "moving" clocks is a physically real effect. This 
fact does not reflect a contradiction for the following reason: space-time 
describes physically real laws (in S and S'), and the machinery which makes 
the clocks go are also controlled by these real laws. 

The space-time conception given here is based on a new expression for 
the dependence of mass on velocity [equation (16)]. In order to show up 
experimentally the differences between equation (16) and the corresponding 
law of the STR [equation (2)] one should measure the mass as a function of 
velocity. On the one hand the STR should be a good approximation in the 
case of [see equation (18)] 

3 ,,/(I) 
m<< - - -  ( 4 1 )  

2 7(2) 

On the other hand in order to obtain large differences between the laws for 
the dependence of mass on velocity [equations (2) and (16)] one should 
investigate objects with large masses ( m 0 > l g ,  see Figure 1). Thus, we 
believe that astrophysical observations should be important for the detec- 
tion of faster-than-light particles (or systems) with real mass. 

However, it is straightforward to show (using Maxwell's equations) that 
charged objects cannot be accelerated through the "light barrier" (v = Cmso). 
This is because a "moving" charged particle (in the "stationary" frame 
described by an electrical field) produces a magnetic field and, because of 
the transformations (21), the energy of this field becomes infinite at v = cm~ 0. 
In conclusion, a charged object can exist at V<Cms ~ and V>Cms ~ but not at 

= Cm~ o. 
As far as the author knows, all the experimental proofs for the law that 

no particle can exceed the velocity of light are based on investigations of 
"moving" charged particles with relatively small masses. However, the 
theory given in this paper also predicts that charged particles cannot be 
accelerated through the "light barrier"; in this case on the effects due to 
equation (16) is superimposed the production of a magnetic field whose 
energy becomes infinity at v :  cm~ 0. 

5. S U M M A R Y  A N D  F I N A L  R E M A R K S  

(1) We have derived a new expression for the dependence of mass on 
velocity [equation (16)] without using any space-time conception. This 
expression is more general than the corresponding law of the STR [equation 
(2)]. On the one hand the deviations from the STR are getting large with 
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increasing mass m. On the other hand in the case of m<< 37(1)/7 (2) the law of 
the STR [equation (2)] is a good approximation. Thus, one should measure 
the dependence of mass on velocity for objects (or systems) with a large 
mass ; the  effects might be enormous in the case of astrophysical objects. 
The effects will not play a role in atomic physics and the physics of 
elementary particles (see Figure 1). 

It is easy to show that faster-than-light objects are possible if the 
function A(m)=E--mCo2 (in this paper approximated by �89 (2)) has the 
property dA(m)/dm>O. However, charged objects cannot be accelerated 
through the "light barrier" (V=Cmso) but can exist either at V<Cm, ~ or at 
V>Cm, o. There is a certain similarity with the phenomenon of resonance: in 
this sense the velocity of light can be considered as "resonant velocity" and 
is not an upper limit for the propagation of signals. 

(2) Einstein's original derivation of E=mco 2 was from the Lorentz 
transformations, and the Lorentz transformations were derived from 
Maxwell's equations. In this paper we have chosen the following way: First 
we have derived the expression E=m,{ O) +1m2",/(2) [equation (13)]. Sec- 
ondly we have modified Maxwell's equation as follows: We have replaced 
the velocity of light c o by (y (1) + 2mso'{(2))1/2. Thirdly we have derived the 
transformations (21) from the modified Maxwell equations. In our approach 
we have to identify the reference system with the reference body and the 
velocity v in the transformations (21) is determined by the mass m s of the 
moving object and its rest mass ms0 [see equation (35)]. Therefore, it is not 
possible to deduce the law for the dependence of mass on velocity from the 
transformations because the transformations can only be formulated by 
means of this law. 

(3) Within the space-time picture discussed here accelerations cannot 
be described because space-time is uncurved. This is due to the fact that 
space-time is coupled to the mass; the mass of an accelerated object varies 
with time and therefore also the space-time metric varies with time, leading 
to a curved space-time. 

The properties of each particle are given by (xt, x2, x3, t, m). In other 
words, we have a five-dimensional representation. How can we determine 
the space-time metric of a frame in the case of two particles (called 1 and 2) 
with different masses? This question can only be answered on the basis of a 
five-dimensional algebra. Particle 1 is characterized by (x t 1, x21, x 31, t l, m l) 
and particle 2 by (xl2, x22, x32, t 2, m2). From this we can define the 
properties of the frame for both particles by (Xll, Xzl, X31, tl, ml)-t- 
(X12, X22, X32, t2, m2)=(Xl3, X23, x33, t 3, m3). This can easily be done on the 
basis of the conservation laws. Within our approach accelerations (which is 
equivalent to a curved space-time) are not possible because space-time is 
flat. A five-dimensional algebra is needed on the basis of a curved space-time. 
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(4) It turns out in this theory that space-time cannot form an absolute 
continuum. We obtain a faithful picture if we assume that space-time is 
eliminated as an active cause in physics; how space-time could possibly be 
eliminated is discussed, a conception very similar to Mach's ideas: It is 
assumed that the dynamical behavior is due to the mutual "action" of all 
the masses in the universe. Space-time is the geometrical representation of 
the physically real laws and plays the role of an auxiliary element. It makes 
no sense to ask "How large is the universe?" or questions like this. We can 
only say something about distances (between the masses) and time intervals. 

In contrast to the theory discussed here, space-time forms an absolute 
continuum within the STR; this kind of space-time has often been criticized 
(see, for example, Einstein, 1955, 1963) because it plays a determining role 
in all processes, without in its turn being influenced by them. 

It has been demonstrated by GOdel (1949) that also within the general 
theory of relativity (GTR) the absoluteness of space-time is not eliminated. 
GOdel showed that within the GTR absolute rotations are possible: The 
whole universe (all the masses) can rotate within an absolute space-time. 

(5) Although the space-time discussed in this paper is fundamentally 
different from the space-time of the STR we have found that effects based 
on the transformation formulas (21) are identical to those expected from the 
STR (for example, the behavior of the half-life of "moving"/~ mesons). 

(6) If the velocity squared exceeds the value (3,(!) +~ms0~ (2)) in the 
transformation formulas (21), the coordinates and time become imaginary. 
It may be objected that imaginary coordinates and an imaginary time have 
no sense. However, in our theory space-time is not the cause for physical 
effects and, therefore, we have to investigate whether the physically real 
properties expressed by imaginary coordinates and an imaginary time make 
sense. In a first step we were able to show that causal anomalies cannot be 
used as an argument against the existence of faster-than-light particles with 
real mass. It should be mentioned that Feinberg (1967) already pointed out 
that the introduction of tachyons (faster-than-light particles with imaginary 
mass) does not lead to logical and causal anomalies. In the case of tachyons 
too the coordinates and time become imaginary in the "moving" frame of 
reference. 

A P P E N D I X  

In contrast to the STR, space-time is not absolute within the theory 
presented here. The coordinates and times for "stationary" systems with 
different masses are not equivalent. In order to fix these eigencoordinates 
and eigentimes in any "stationary" system we have to introduce a "sta- 
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tionary" standard system S N consisting of the standard mass m N and an 
arbitrarily fixed eigencoordinate-eigentime set of numbers xN1, XU2, X3 u, tN" 
From this it is easy to fix the space-time in any other "stationary" system S 
with the mass mso. Using both the distances and time intervals of the 
standard system and of any other system S, we obtain with equation (22) 
the following relation: 

Axi --( /̀O)+2Y(2)ms~ ) 1/2 At i----1,2,3 (A.1) 
AX N `/(1) + ~`/(2)mN At N '  

There are two possibilities to fix the space-time in the system S: 
(i) The eigentimes of all "stationary" systems are equivalent, i.e., the 

time does not depend on the mass ms0. Then we obtain from equation (A.1) 

y(I) + {̀ ~(2)ms 0 ) 1/2 

Ax i  = `/(1) + 2`/(2)m N AxN' i=1,2,3  

A t = A t  u (A.2) 

For example, in the case of `/(2) ~>0 we obtain for 
mso>mN: contraction of space in system S relative to the space in the 

standard system. 
rnso<mu: extension of space in system S relative to the space in the 

standard system. 
(ii) The eigencoordinates of all "stationary" systems are equivalent, i.e., 

the space does not depend on the mass rn~0. In this case it follows from 
Equation (A. 1) 

Axi--Ax/u , i=  1,2,3 

T(I) +2`/(2)mN ) 1/2 
At= At N (A.3) 

T (1) + ~`/(2)mso 

For example, in the case of ,/(2) >0 we obtain for 
m~o > m  N slowing down of docks in system S relative to the docks in the 

standard system. 
rnso <raN: slowing up of docks in system S relative to the clocks in the 

standard system. 
To fix slaace-time in any "stationary" system with the mass ms0 we may use 
either method (i) or method (ii). Within the STR the space-time metric is the 
same for all "stationary" frames of reference. 
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